ON A MOTION OF AN EQUILIBRATED GYROSCOPE IN THE NEWTONIAN FORCE FIELD

(OB ODNOM DVIZHENII URAVNOVESHENNOGO GIROSKOPA V NIUTONOVSKOM POLE SIL)

```
PMM Vol.27, No.6, 196.3, pp.10.99-1101
    IU.A. ARKHANGEL'SKII
                    (Moscov)
(Received June 5, 1963)
```

1. It is well known [1, 2] that the equations of motion of a heavy solid about a point fixed in its center of gravity in the Newtonian force field are

$$
A \frac{d p}{d t}+(C-B) q r=3 \frac{g}{R}(C-B) \gamma^{\prime} \gamma^{\prime \prime}, \quad \frac{d \gamma}{d t}=r \gamma^{\prime}-q \gamma^{\prime \prime}\left(\begin{array}{c}
A B C \tag{1.1}\\
p q r \\
\gamma^{\prime} \gamma^{\prime \prime}
\end{array}\right)
$$

with the particular solution

$$
\begin{equation*}
r=A^{\prime} \alpha^{-1 / 2} p, \quad \gamma^{\prime}=B^{\prime} \alpha^{-1 / 2} q, \quad \gamma^{\prime \prime}=C^{\prime} \alpha^{-1 / 2} r \quad(\alpha=3 g / R) \tag{1.2}
\end{equation*}
$$

Where A^{\prime}, B^{\prime} and C^{\prime} are constants to be determined. Introducing in (1.1) the dimensionless variables

$$
\begin{equation*}
p_{1}=\alpha^{-1 / 2} p, \quad q_{1}=\alpha^{-1 / 2} q, \quad r_{1}=\alpha^{-1 / 2} r . \quad t_{1}=\alpha^{1 / 2} t \tag{1.3}
\end{equation*}
$$

and taking into account (1.2) we obtain the equations
$A \frac{d p_{1}}{d t_{1}}+(C-B)\left(1-B^{\prime} C^{\prime}\right) q_{1} r_{1}=0, \quad A^{\prime} \frac{d^{\prime} p_{1}}{d t_{1}}+\left(C^{\prime}-B^{\prime}\right) q_{1} r_{1}=0 \quad\left(\begin{array}{c}A B C \\ A_{1}^{\prime} B^{\prime} C^{\prime} \\ p_{1} q_{1} r_{1}\end{array}\right)$ from which we are able to determine A^{\prime}, B^{\prime} and C^{\prime} as

$$
\frac{C-B}{A} u+v-w=\frac{C-B}{A}, \quad A^{\prime}=\sqrt{\frac{u}{v w}} \operatorname{sgn} u \quad\left(\begin{array}{c}
A B C \tag{1.5}\\
A^{\prime} B^{\prime} C^{\prime} \\
u v w
\end{array}\right)
$$

Since the determinant of the linear system (1.5) equals zero and the system is consistent, its solution

$$
\begin{equation*}
u=1-a+w a, \quad v=1-b+w b \quad(a=A / C, b=B / C, a+b \neq 1) \tag{1.6}
\end{equation*}
$$

depends on one arbitrary constant w.
Let us consider the following case:

$$
\begin{equation*}
u>0, \quad v>0, \quad w>0 ; \quad A^{\prime}>B^{\prime}>C^{\prime} \tag{1.7}
\end{equation*}
$$

which, by (1.5) occurs under the condition $u>v>w$ which is satisfied, in particular, when

$$
\begin{equation*}
w<1, \quad C>B>A \tag{1.8}
\end{equation*}
$$

Then the second group of equations in (1.4) can be taken as the classical equations of motion of a solid about a fixed point in the case of Euler where A^{\prime}, B^{\prime} and C^{\prime} are moments of inertia. There equations possess the first integrals

$$
\begin{equation*}
A^{\prime} p_{1}^{2}+B^{\prime} q_{1}^{2}+C^{\prime} r_{1}^{2}=D^{-1}, \quad A^{\prime 2} p_{1}^{2}+B^{\prime 2} q_{1}^{2}+C^{\prime 2} r_{1}^{2}=1 \tag{1.9}
\end{equation*}
$$

Where D is an arbitrary constant, and the second constant of integration is set to be equal to unity (in the conventional Greenhill notation $\mu^{2} D^{2}=1$) because of the trivial integral of system (1.1)

$$
\gamma^{2}+\gamma^{\prime 2}+\gamma^{\prime 2}=1
$$

Assuming that $B^{\prime}>D$, we can express [3] the formulas for p_{1}, q_{1} and r_{1} in the form
$p_{1}=-\sqrt{\frac{D-C^{\prime}}{D A^{\prime}\left(A^{\prime}-C^{\prime}\right)}}$ cn $\tau, \quad q_{1}=\sqrt{\frac{D-C^{\prime}}{D B^{\prime}\left(B^{\prime}-C^{\prime}\right)}}$ $\operatorname{sn} \pi, \quad r_{1}==\sqrt{\frac{A^{\prime}-D}{D C^{\prime}\left(A^{\prime}-C^{\prime}\right)}} \mathrm{dn} \mathrm{\tau}$
$\tau=n\left(t_{1}-t_{0}\right), \quad n^{2}=\frac{\left(A^{\prime}-D\right)\left(B^{\prime}-C^{\prime}\right)}{D A^{\prime} B^{\prime} C^{\prime}}, \quad k^{2}=\frac{\left(A^{\prime}-B^{\prime}\right)\left(D-C^{\prime}\right)}{\left(B^{\prime}-C^{\prime}\right)\left(A^{\prime}-D\right)}$

These formulas, together with (1.2) and (1.3), give the solution of the problem.
2. Let us assume that r_{10} is large and that at the initial instant of time the following inequality

$$
\begin{equation*}
0<\Upsilon_{0}{ }^{\prime \prime}<1 \quad\left(f\left(t_{0}\right)=f_{0}\right) \tag{2.1}
\end{equation*}
$$

is satisfied.
Further, assuming that $\gamma_{0}^{\prime}=0$, we obtain from formulas (1.10) that $t_{0}=0$.

Let us introduce the small parameter

$$
\begin{equation*}
\lambda=\gamma_{0}{ }^{\prime \prime} / r_{10} \tag{2.2}
\end{equation*}
$$

The quantities $A^{\prime}, B^{\prime}, C^{\prime}, D, u, v, w, n$ and k wlll be expressed as power series in λ
$u-1-a+\lambda^{2}(\ldots), \quad v=1-b \not \lambda^{2}(\ldots), w=\lambda^{2}(1-a)(1-b)+\lambda^{4}(\ldots)$
$A^{\prime}=[\lambda(1-b)]^{-1} \nLeftarrow \lambda(\ldots), \quad B^{\prime}=[\lambda(1-a)]^{-1}+\lambda(\ldots), \quad c^{\prime}=\lambda, \quad D=\lambda \gamma_{0}{ }^{n-2}+\lambda^{3}(\ldots)$
$n=\frac{\gamma_{0}{ }^{\prime \prime}}{\lambda}+\lambda(\ldots), \quad k^{2}=\lambda^{2} \frac{\left(1-\gamma_{0}{ }^{\prime 2}\right)(b-a)}{\gamma_{0}{ }^{22}}+\lambda^{4}(\ldots)$
While investigating the motion of a rigid body we shall use the Eulerian angles

$$
\begin{equation*}
\cos \theta=\Upsilon^{\prime \prime}, \quad \frac{d \psi}{d t}=\frac{p \gamma+q \gamma^{\prime}}{1-\gamma^{\prime \prime 2}}, \quad \frac{d \varphi}{d t}=r-\frac{d \psi}{d t} \cos \theta \quad\left(\cos \varphi_{0}=\frac{\gamma_{0}}{\gamma_{0}^{\prime}}\right) \tag{2.4}
\end{equation*}
$$

By (1.2), (1.3), (1.9) and (1.10) the pirst formula in (2.4) can be reduced to $\cos \theta=\gamma_{0}{ }^{\prime \prime} d n T$, and by retaining only the first two terms in the expansion of $\mathrm{dn} T$ in series of powers of the small parameter k^{2}, we obtain by (2.3)

$$
\begin{equation*}
\cos \theta=\gamma_{0}{ }^{\prime \prime}\left[1-\lambda^{2} \frac{\left(1-\gamma_{0}{ }^{2}{ }^{2}\right)(b-a)}{4 \gamma_{0}{ }^{\prime 2}}\left(1-\cos 2 r_{0} t\right) \nLeftarrow \ldots\right] \tag{2.5}
\end{equation*}
$$

By (1.2), (1.3), (1.9), (1.10) and (2.3) we can reduce the second equation in (2.4) to

$$
\begin{gather*}
\frac{d \psi}{d \tau}=\delta\left(1+\frac{\beta}{1+v \operatorname{sn}^{2} \tau}\right), \quad \beta=\frac{\lambda D^{-1}-1}{1-\gamma_{0}^{\mu_{2}}}=-1+\lambda^{2}(1-b)+\ldots \\
\nu=k^{i} m, \quad m=\frac{\gamma_{0}^{\prime{ }^{2}}}{1-\gamma_{0}^{\prime{ }_{2}^{2}}}, \quad \delta=\frac{1}{\lambda n}=\gamma_{0}^{n-1}+\lambda(\ldots) \tag{2.6}
\end{gather*}
$$

Integrating (2.6) we obtain [4]

$$
\begin{array}{lc}
\psi-\psi_{0}=\delta\left[J_{1} \tau+J_{2} \ln \frac{\theta(\tau-\xi)}{\theta(\tau+\xi)}\right], & \operatorname{sn}^{2} \xi=-m \\
J_{1}=1+\beta\left[1+\frac{\operatorname{sn} \xi}{\operatorname{cn} \xi \operatorname{dn} \xi} \frac{0^{\prime}(\xi)}{\theta(\xi)}\right], & J_{2}=\frac{\beta \operatorname{sn} \xi}{2 \operatorname{cn} \xi \operatorname{dn} \xi} \tag{2.7}
\end{array}
$$

Let us set

$$
\begin{equation*}
\theta(\tau+\xi)=\rho e^{i x}, \quad \theta(\tau-\xi)=\rho e^{-i x} \quad\left(\ln \frac{\theta(\tau-\xi)}{\theta(\tau+\xi)}=-2 i \chi\right) \tag{2.8}
\end{equation*}
$$

Retaining only the first terms in the expansion in powers of λ in (2.7) we have

$$
\begin{gather*}
\frac{\operatorname{sn} \xi}{\operatorname{cn} \xi \operatorname{dn} \xi} \frac{\theta^{\prime}(\xi)}{\theta(\xi)}=-\frac{1}{2} k^{2} m+\ldots, \chi=\frac{k^{2}}{4} \sqrt{m(m+1)} \sin 2 \tau+\ldots \\
J_{1}=\frac{1}{2} \lambda^{2}(2-a-b)+\ldots, \quad J_{2}=\frac{i}{2}\left(\frac{m}{m+1}\right)^{1 / 2}
\end{gather*}
$$

By (2.3), (2.8) and (2.9) the formula for the precession angle (2.7) takes the form

$$
\begin{equation*}
\psi-\psi_{0}=\frac{1}{2} \alpha^{1 / 2} \lambda(2-a-b) t-\lambda^{2} \frac{b-a}{4 \gamma_{0}^{\prime 2}} \sin 2 r_{0} t+\ldots \tag{2.10}
\end{equation*}
$$

By (1.10), (2.5) and (2.10) we obtain from the last two formulas in (2.4) the following expression for the angle of atural rotation:

$$
\begin{equation*}
\varphi-\frac{\pi}{2}=\left\{r_{0}-\frac{\alpha}{4 r_{0}}\left[b-a \downarrow \gamma_{0}^{\prime 2}(4-a-3 b)\right]\right\} t+\ldots \tag{2.11}
\end{equation*}
$$

In formulas (2.5), (2.10) and (2.11) three arbitrary constants appear: $\Psi_{0}, \cos \theta_{0}=\gamma_{0}^{\prime \prime}$ and $r_{0}\left(r_{0}\right.$ is large). By substituting $t+h$ for t (system (1.1) is autonomous) we can add a fourth arbitrary constant φ_{0}, which is related to h on the strength of (2.11), through the following formula:

$$
\begin{equation*}
\varphi_{0}=\frac{\pi}{2}+r_{0} h+\ldots \tag{2.12}
\end{equation*}
$$

Let us note that formulas (2.5), (2.10) and (2.11) which determine the angles θ, ψ and φ differ substantially from the corresponding formulas in the case of Euler. Indeed, if in the case of Euler we introduce the small parameter $\lambda=\gamma_{0}{ }_{2}^{\prime \prime} / r_{0}$, then D will not depend on λ. Consequently, the quantity k^{2} will also be independent of λ and the Jacobi functions $s n T$, cn T and dn T cannot be expanded in powers of λ.
3. Let us now consider the motion of a rigid body, using (2.5), (2.10) and (2.11); formulas (2.5) and (2.10) will be put in the form

$$
\theta-\theta_{10}=-s \sin \theta_{0} \cos 2 r_{0}(t+h)+\ldots, \quad \theta_{10}=\theta_{0}+s \sin \theta_{0} \downarrow
$$

$\psi-\psi_{0}=\frac{1}{2} \alpha^{1 / 2} \lambda(2-a-b) t-s \sin 2 r_{0}(t+h)+\ldots\left(s=\lambda^{2}(b-a) / 4 \cos \theta_{0}\right)(3.1)$
Consider a unit sphere, centered on the fixed point, and form on its surface a spherical rectangle made up of two parallels distant from the middle parallel θ_{10} by the angles $\pm s \sin \theta_{0}$ and of two meridians distant from the middle meridian Ψ_{0} by the angles $\pm s$. Then, the trajectory (θ_{1}, Ψ_{1}) traced by the $x-a x i s$ on our unit sphere rotating with the constant angular velocity $\dot{\psi}_{1}=1 / 2 s^{1 / 2} 1(2-a-b)$ about the fixed axis z_{1}, is the ellipse

$$
\begin{equation*}
\frac{\left(\left(1-U_{10}\right)^{-}\right.}{\left(s \sin \theta_{1}\right)^{2}}+\frac{\left(\psi_{1}-\psi_{0}\right)^{2}}{s^{2}}=1 \tag{3.2}
\end{equation*}
$$

which is tangent to the spherical rectangle at the midpoint of its sides. When tracing this ellipse, the z-axis performs in the first approximation a periodic motion with the period $T=\pi / r_{0}$, and at the instants of time

$$
\begin{equation*}
t_{1}^{*}=\frac{\pi\left(n_{1}+3 / 2\right)-2 \varphi_{0}}{2 r_{0}}, \quad t_{2}^{*} \because \frac{\pi\left(n_{1}+1\right)-2 \varphi_{0}}{2 r_{0}} \quad\left(n_{1}=0,+1, \pm 2, \ldots\right) \tag{3.3}
\end{equation*}
$$

the z-axis will pass through the points of intersection of the middle parallel with the outer meridians ($t_{1}{ }^{*}$) and through the points of intersection of the middle meridian with the outer parallels (t^{*}).

The natural rotation of the body as shown by formula (2.11) differs very little from the uniform rotation with large angular velocity r_{0}.

Let us consider now the cases $\gamma_{0}{ }^{\prime \prime}=1$ and $\gamma_{0}{ }^{\prime \prime}=0$. When $\gamma_{0}{ }^{\prime \prime}=1$ $\left(\gamma_{0}=\gamma_{0}^{\prime}=0\right)$ formulas (1.2) show that $p_{0}=q_{0}=0\left(A^{\prime} \neq 0, B^{\prime} \neq 0\right)$. Then, from the integrals (1.9) follows that $p=q=0\left(\gamma=0, \gamma^{\prime}=0\right)$ at all values of time, and the body rotates with the constant angular velocity r_{0} about the fixed axis z_{1}.

The case $\gamma_{0}{ }^{\prime \prime}=0$ reduces to the case $r_{0}=0$ (if $C^{\prime} \neq 0$) which is of no interest, or (if $C^{\prime}=0$) to the case $p=q=\gamma^{\prime \prime}=0$, which has been investigated under more general conditions in [1].

BIBLIOGRAPHY

1. Beletskii, V.V., Ob integriruemosti uravnenii dvizhenia tverdogo tela okolo zakreplennoi tochki pod deistvem tsentral'nogo niutonovskogo polia sil (On the integrability of the equations of motion of a rigid body about a fixed point in central Newtonian force fleld). Dokl. Akad. Nauk SSSR, Vol. 113, No. 2. 1957.
2. Stekloff, V.A., Remarque sur un probleme de Clebsch sur le mouvement d'un corps solide dans un liquide indéfini et sur le probleme de M. de Brun. Comptes rendus, Vol. 135, pp. 526-528, 1902.
3. Appel', P., Teoreticheskaia mekhanika (Theoretical Mechanics), Vol. 2. Fizmatgiz, 1960.
4. Sikorski1, Iu.S., Elementy teorii ellipticheskikh funktsii sprilozheniami k mekhanike (Elements of the Theory of the Elliptic Functions with Application to Mechanics). ONTI, 1936.
5. Arkhangel'skii, Iu. A., O dvizhenii privedennogo v bystroe vrashchenje tiazhelogo tverdogo tela vokrug nepodvizhnoi tochki (On the motion of a rapidly rotating heavy solid about a fixed point). PMM Vol. 27, No. 5, 1963.
