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1.. It is well known [l, 21 that the equations of motion of a’ heavy 

solid about a point fixed in its center of gravity in the Newtonian 

force field are 

(1.1, 

with the particular solution 

-f = A’&/’ p, y’ zz B’&‘q, y” = C’a-‘lzr (a = 3glR) (1.2) 

where A’, B’ and C’ are constants to be determined. Introducing in (1.1) 

the dimensionless variables 

p1 = a-‘/p, 

and taking into account 

q1 = a-‘/a q, rl = a -‘/zr_ 1, = a”l’t (1.3, 

(1.2) we obtain the equations 

(1.4) 

dpx 
AQ(C-B)(l-B’C’) 41’1 = 0, 

C’Pl 
A’ dl, + (C’ - B’) qlrl = 0 

from which we are able to determine A’, B’ and C’ as 

C-B C-B 
A u+v--w=- A ’ A’ = v’zw sgn u (1.5) 

Since the determinant of the linear system (1.5) equals zero and the 

system is consistent, its solution 

1684 
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U=l-a+wa, v = 1 - b + wb (a = A IC, b = B /C, a d- b # 1) (14 

depends on one arbitrary constant 10. 

Let us consider the following case: 

u >G, v > 0, w >o; A’>B’>C’ (1.7) 

which, by (1.5) occurs under the condition u > v >. w which is satisfied, 

in particular, when 

w < 1, C>B>A (1.8) 

Then the second group of equations in (1.4) can be taken as the 

classical equations of motion of a solid about a fixed point in the 

case of Euler where A’, B’ and C’ are moments of inertia. There equa- 

tions possess the first integrals 

A’pc $ B’q12 $ C’r? = D-l, A”p12 $ Bf2q12 + C’2r12 = 1 (1.9) 

where D is an arbitrary constant, and the second constant of integration 

is set to be equal to unity (in the conventional Greenhill notation 
P2D2 = 1) because of the trivial integral of system (1.1) 

72 f 7’2 -f r”2 = 1 

Assuming that B’ > D, we can express [31 the formulas for pl, q1 and 

r1 in the form 

v- D - C’ 
/- 

I/ 

D - C’ 
Pl = - DA’(A’__C’)cn =I ql= DB’(B’-_sSn r, n == &;;!C,)dnr 

2= n (t1 - to), 
~1 = (A’ - D) (B’ - C’) (.-1’ - WP - C) 

DA’B’C’ ’ k2 = (B’ - C’)( A’ - D) 
(1 ,lo) 

These formulas, together with (1.2) and (1.3), give the solution of 

the problem. 

of 

iS 

t0 

2. Let us assume that r10 is large and that at the initial instant 

time the following inequality 

satisfied. 

Further, assuming 

=0 . 
that y,,’ = 0, we obtain from formulas (1.10) that 
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Let us introduce the small parameter 

h = To” I rr, (2.2) 

The Quantities A’, B’, C’, D, ~1, V, 10, n and k will be expressed as 
power series in A 

u = I - a + h2 ( . . .), v = I- b & hB ( . . .) ,w = Aa (1 - a) (1 - b)+h’(...) (2.3) 

A’ = [1L (1 - b)]-’ + l. (. . .), B’ = [h (1 -a)]-’ + I(...), c’= lu, D=h~,“-2+11s(...) 

n= ‘g-$+ A(. . .), ka = ka (1 - ~a”? (b - 4 f i4 ( 
To “0 . . . 

) 

While investigating the motion of a rigid body we shall use the 

Eulerian angles 

By (1.2), (1.3). (1.9) and (1.10) the first formula in (2.4) can be 

reduced to cos 8 = y. ” dn T, and by retaining only the first two terms 

in the expansion of dn T in series of powers of the small parameter k2, 

we obtain by (2.3) 

case = To” 
[ 

I-aa 
(1 - -ro”‘? @ - 4 (I _ cos 2r t) 

hoea 0 
$ . . . I (2.5) 

By (1.2), (1.3), (1.9). (1.10) and (2.3) we can reduce the second 

equation in (2.4) to 

B hD-1 - 1 

v SIP2 ’ B = 1 - 7,“s = - 1 + hP (1 -b) + . 

v = kam, 
7, 

“a 
m=1-_, 6= & = T@“--’ + h (..., (2.6) 

Integrating (2.6) we obtain [41 

$-&=6[J1r$ Jal*gB:z,-$, dt = - r,L 

J1=iTBji_$$$$#]* 
B sn E 

Ja = 2 cn E dn E (2.7) 

Let us set 

8 (7 + E) = peix, e (7 - 5) = pe-ix ( 0 (t - El 
In e tz + ~j = - 2ix) (2.8) 

Retaining only the first terms in the expansion in powers of h in 

(2.7) we have 

sn 5 0’ (8 __- 
cn E dn 5 0 (5) - -dkzm+..., x= -f I/m (m + 1) sin 27 + . . . 

1 
J, = zLa (2 - a - b) + . . ., Jz -= + (,&)‘I 
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By (2.3). (2.6) and (2.9) the formula for the precession angle (2.7) 

takes the form 

Ilr-_0,=~~‘iah(2-a-b)t-_b’b~~~~sin2~,t+... (2.10) 

By (1.10). (2.5) and (2.10) we obtain from the last two formulas in 

(2.4) the following expression for the angle of natural rotation: 

q__5_ ro - y$ [b - a $ ~~74 - a - 3b)]} t + . . . (2.11) 

In formulas (2.5). (2.10) and (2.11) three arbitrary constants appear: 

vyO* cos 8, = y,” and r. (r. is large). By substituting t + h for t 

(system (1.1) is autonomous) we can add a fourth arbitrary constant qo, 

which is related to h on the strength of (2.11). through the following 

formula: 

To = 5 $ r,h + . . . (2.12) 

Let us note that formulas (2.5), (2.10) and (2.11) which determine 

the angles 8, y and 9 differ substantially from the corresponding formu- 

las in the case of Euler. Indeed, if in the case of Euler we introduce 

the small parameter h = y,“/ ro, then D will not depend on h. Con- 

sequently, the quantity k2 will also be independent of A and the Jacobi 

functions sn T, cn T and dn T cannot be expanded in powers of A. 

3. Let us now consider the motion of a rigid body, using (2.5). (2.10) 

and (2.11); formulas (2.5) and (2.10) will be put in the form 

6 - O,, = - ssin6,cos2ro (t + h) + . . ., 810=0,+ ssin6,+ 

9 - $. == -k ar’/‘A (2 - a - b) t - s sin 2r, (t + h) + . . ., (s = h2 (b - a)/4cos 0,) (3.1) 

Consider a unit sphere. centered on the fixed point, and form on its 

surface a spherical rectangle made up of two parallels distant from the 

middle. parallel 8,, by the angles f s sin 6, and of two meridians dis- 

tant from the middle meridian y. by the angles f s. Then, the trajectory 

(61, I+JI) traced by the z -axis on our unit sphere rotating with the con- 

stant angular velocity i, = l/2 s l’21 (2 - a - b) about the fixed axis 

II' is the ellipse 

(3.2) 

which is tangent to the spherical rectangle at the midpoint of its 

sides. When tracing this ellipse, the z-axis performs in the first 

approximation a periodic motion with the period T = w/ro, and at the 

instants of time 
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J-t (nlf 3/2) - Q, 
t1*- Zr, ~~ ~- , f,* ~- 

2-c (n1 + 1) - 2q1, 
“r” (n1= 0, + 1, + 2 ,...) (3.3) 

the z-axis will pass through the points of intersection of the middle 

parallel with the outer meridians (fl *) and through the points of inter- 
section of the middle meridian with the outer parallels (t2*). 

The natural rotation of the body as shown by formula (2.11) differs 

very little from the uniform rotation with large angular velocity rO. 

Let us consider now the cases ye” = 1 and ye” = 0. When y,” = 1 

( yo = yo’ = 0) formulas (1.2) show that p. = q. = 0 (A’ # 0. B’ # 0). 

Then, from the integrals (1.9) follows that p = q = 0 (y = 0, y’ = 0) 

at all values of time, and the body rotates with the constant angular 

velocity r. about the fixed axis xl. 

The case y. ” = 0 reduces to the case r. = 0 (if C’ f 0) which is of 

no interest, or (if C’ = 0) to the case p = q = y”= 0, which has been 

investigated under more general conditions in [d. 
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